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ABSTRACT 

Let H n ~-- II~ 2n ~< ll~ be the  Heisenberg group and let #~ be the  normalized 

surface measure  for the  sphere of radius t in •2n. Consider  the  maximal  

function defined by M f  -- supt> 0 If  * #tl .  We prove for n _> 2 tha t  M 

defines an opera tor  bounded on LP(H '~) provided tha t  p > 2n/(2n - 1). 

This  improves an earlier result  by Nevo and Thangavelu,  and the  range for 

LP boundedness  is opt imal .  We also extend the  result  to a more  general 

class of surfaces and to groups satisfying a nondegeneracy condition; these 

include the  groups of Heisenberg type.  

1. In troduct ion  

Let G be a finite-dimensional two step nilpotent group which we may identify 

with its Lie algebra g by the exponential map. We assume that  g splits as a 

direct sum g = m ~ } so tha t  

Ira, m] c 3, = {0} ,  

and that  dim(m) = d, dim(}) = m. 

Throughout  we shall make the following 
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NONDEGENERACY HYPOTHESIS. 

the bilinear form 

is nondegenerate. 

For every nonzero linear functional w E t* 

rox  ro --+ ~ 

(X, Y) ~ w([X, V]) 

Note that  the skew symmetry of ,7~ and the nondegeneracy hypothesis imply 

that  d is even. 

There is a natural dilation structure relative to ro and $, namely for X E ro 

and U E 3 we consider the dilations 

St: ( X , U )  ~ ( tX ,  t2U). 

With the identification of the Lie algebra with the group 5t becomes an auto- 

morphism of the group. 

In exponential coordinates (x, u), x E II{ d, u E ~m, the group multiplication 

is given by 

(1.1) (x, u) . (y, v) = (x + y, u + v + xt Jy)  

where xt Jy  = (Xt J ly ,  . . . , Xt Jmy)  E]I{ m and the Ji are skew-symmetric matrices 

acting on ~d (i.e. j t = - J i ) .  For u E 1I{ m we also form the skew-symmetric 

matrices J~ = ~i~=1 uiJi  and the nondegeneracy hypothesis is equivalent with 

the invertibility of Ju for all u 7 ~ 0. 

The most prominent examples are the Heisenberg groups H n which arise 

when d = 2n, m = 1 and J = J1 is the standard symplectic matrix on E2n. 

These belong to the class of Heisenberg-type groups (termed H-type groups in 

[9]), for which ]~ = -41ul2I ,  so that  the nondegeneracy hypothesis is clearly 

satisfied in this case. Note that  in general m has to be small compared to d 

(see [9] where the connection with Radon-Hurwitz numbers is pointed out). 

The class considered here has been introduced by M6tivier [10] in his study of 

analytic hypoellipticity; the nondegeneracy assumption is termed "Condition 

(H)" in [10]. There are many groups which satisfy the nondegeneracy condition 

but which are not isomorphic to a Heisenberg-type group; we give an example 

in 57. 

Let E be a smooth convex hypersurface in m and let # be a compactly sup- 

ported smooth density on Z. We make the following 

CURVATURE HYPOTHESIS. The Gaussian curvature of E does not vanish on 

the support of #. 
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Define the dilate #t by 

(1.2) (#t, f )  = / f ( tx ,  O)dp(x). 

We recall the definition of convolution 

(1.3) 
f • g(x, u) = I f (y '  v)g((y, v) -1 .  (x, u))dydv 

= / f ( y , v ) g ( x  - y , u  - v + xt jy)dydv 

and define for Schwartz functions the maximal operator M by 

Mf(x ,  u) = sup If * #t(x, u)[. 
t>0 

We prove the following sharp result. 

THEOREM: Suppose d > 2. Then M extends to a bounded operator on LB(G) 
if  and only if  p > d/(d - 1). 

Remarks: (i) Other more "regular" spherical maximal functions on the Heisen- 

berg group have been considered in [2], [15]. In these papers the maximal func- 

tions are generated by measures on hypersurfaces and the averaging operators 

are Fourier integral operators associated to local canonical graphs. In our work 

the maximal functions are generated by measures on surfaces of codimension 

m + 1, and the associated canonical relations project with fold singularities. 

(ii) A previous result is due to Nevo and Thangavelu [12] who considered the 

case of spherical means on the noncentral part of the Heisenberg groups (m = 1) 

and obtained L p boundedness in the smaller range p > (d - 1)/(d - 2), d > 2. 

(iii) Our theorem is an analogue of Stein's theorem [16] in the Euclidean case. 

The necessity of the condition p > d/(d - 1) follows from the example in [16]; 

one tests M on the function given by f (y ,v )  = ly]l-d(log lyl)-l)i(y,v) with a 

suitable cutoff function X. The L 2 methods in this paper are not sufficient to 

establish L ;  boundedness for p > 2 for the case d = 2 (that is, for an extension 

of Bourgain's result [1] in the Euclidean case). 

(iv) The result should remain true for any nilpotent Lie group of step _~ 2; 

i.e. the nondegeneracy hypothesis should not be necessary. This is currently an 

open problem. 

(v) As a corollary of the L p estimate for the maximal operator one obtains 

the pointwise convergence result limt-~0 #t * f(x) = cf(x) almost everywhere, if 

f E L p and c = f d#. Moreover, the L p bounds of the maximal operator are 
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relevant for certain results in ergodic theory, where one needs to have pointwise 

control for large t. 

(vi) We use in an essential way the invariance of the subspace r0 under the 

dilation group {St}. Namely, this implies a favorable bound for the principal 

symbol of (d/dt)#t on the fold surface of the associated canonical relation. A 

similar phenomenon was observed in [11] for averages along light rays. 

(vii) One can replace the measure on ro by a measure supported on a perturbed 

subspace ~ which is transversal to the center but no longer invariant under 

{St}; then the phenomenon in the last remark does not occur. In the above 

coordinates ~3 is given as 

(1.4) glJ = {(x, Ax),x • ~d}, 

where A = (Aij) is a m × d matrix. Define a measure #t h by 

(pAt, f) = f f(tx, t2Ax)d#(x); 

we also set #A := #1 h. Consider the maximal operator M A defined by 

(1.5) MAf = sup If * PAl. 
t~0 

For general A we then prove the partial result that  M A is bounded for p > 

(3d - 1)/(3d - 4). We conjecture that  boundedness holds for p > d/(d - 1) 

which by our theorem holds true for A = 0. 

Structure of the paper=. In §2 we shall give the basic decompositions of the 

operator. Almost orthogonality arguments are used in §2 to reduce matters to 

a "local" maximal operator (where the dilation parameter is ..~ 1). In order to 

estimate the local maximal operator it is necessary to understand the precise 

regularity properties of the averages. It turns out that  these are Fourier integral 

operators with folding canonical relations and our main decomposition is in 

terms of the (scaled) distance to the surface of degeneracy. In §4 we state 

the main (known) estimates for oscillatory integral operators associated to fold 

singularities. In §5 we first reduce the estimate for the averages to estimates 

for oscillatory integral operators; this argument is rather standard and similar 

to calculations in [5]. The main part of §5 is concerned with showing that  the 

uniform assumptions (4.3)-(4.5) on the phase in the case of folding canonical 

relations are indeed satisfied. We then conclude that  section discussing the L 2 

estimates for Ot[f * #t]; here we take advantage of the fact that  the principal 
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symbol of this operator vanish on the surface of degeneracy. In §6 we complete 

the proof of the main theorem by deriving appropriate weak type (1, 1) bounds. 

In the appendix §7 we give an example of a two step nilpotent group which 

is not isomorphic to a Heisenberg-type group but satisfies the nondegeneracy 

hypothesis. 

Notation: Given two quantities A and B we write A < B if there is a positive 

constant C, such that  A <_ CB. 

Note: After a preprint version of our article had been circulated, S. Thangavelu 

informed us that  he and E. K. Narayanan had obtained another proof of the 

sharp L p inequality for the case of the spherical maximal function on the Heisen- 

berg group H ~, n _> 2, shortly before they became aware of our preprint. Their 

argument extends ideas from [12] and is based on estimates for Laguerre func- 

tions. It is contained in a preprint entitled "An optimal theorem for the spherical 

maximal operator on the Heisenberg group". 

ACKNOWLEDGEMENT: We thank the referee for suggestions concerning the 

exposition. 

2. P r e l i m i n a r y  d e c o m p o s i t i o n s  

We shall present the argument for the maximal operator M A in (1.5). We shall 

denote by Aj the jth column of A and by IIAI] the matrix norm of A with respect 

to the Euclidean norms on ~d and I~ m . In what follows we shall always assume 

that  I]AI] < C1 for some fixed C1 (and various bounds may depend on C1). If 
IIAII occurs explicitly in an estimate then we are interested in the behavior for 

A -+ 0, as the case of our Theorem corresponds to A = 0. 

We note that  by localizations and rotations in ll~ d one can assume that  p has 

small support and that  the projection of E to m is given as a graph Xd = F(x'), 

x I = (x l , . . .  ,Xd-1), SO that  Vx, F(0) = 0 and so that  p is supported in a small 

neighborhood of (0, F(0)) (we may assume that  ]Vz, P(x')] < Colco/100 where 

co, Co are defined in (5.10) below). Note that  a rotation has the effect of 

replacing the matrices Ji in the group law by QtJiQ with Q E SO(d). We thus 

will need to prove an estimate which is uniform in these rotations. 

Using the Fourier inversion formula for Dirac measures we may write 

(x, u) = ~((x, u) J f  it A ei(a(xg-F(xl) )TT.(u-Ax) ) dGdT 

where X is a smooth compactly supported function and the integral converges 

in the sense of oscillatory integrals (thus in the sense of distributions). 
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We split the integrals by introducing dyadic decompositions in (a, T) and then 
also in a, when lal < N .  

Let ~o E 

supp(~o) C 
1 <_ l < k/3,  

(2.1.1) 

(2.1.2) 

(2.1.3) 

C~(I~) be an even function so that 6 ( s )  = 1 if Is] _< 1/2 and 

( -1 ,1) .  Also define (l(S) = @(s/2) - @(s) and for k _> 1, 

]~0(0",T) : ~ 0 ( V / ~  + ITI2), 

/~k,O(a, ~-) = { l (2 -kx /a  2 + ]V12)(1 -- {0(2-ka)), 

/3k,t (~, ~) = ¢1 (2 -k ~/~: + M:)~,  (2~-~o), 

~k(~,~) = ¢1(2-k~/~ ~ + I~p)Co(2Ik/31-~-~). 

Then observe that  

"_ 1<_l<k/3 

and for k > 0 the function/~k,o is supported where lal .~ 2 k and ITI < 2 k, /3k,L 
is supported where ITI ~ 2 k and lal ~ 2 k-l and ]~k is supported where ITI ~ 2 k 
and ]a] <~ 2 2k/3. 

Define 

(2.2.1) K°(x ,u )  = X(x,u) 

Kk' l (x ,u)  = ~((x,u) 

(2.2.2) 

(2.2.3) fx'k(x,u) = X(x,u) 

/ei(~(xd-r(x'))+r'(u-Ax))/3o (~, 7)dadT, 

/ ei(~(x~-r(x'))+r(~-Ax)) /3a,~(a, T)dadT, 

0 <_ 1 < k/3, 

// ei(a(~-r(x'))+r(~-Ax))/~k (a, T)dadT-; 

moreover, for t > 0 define the dilates 

[ht °, Kt k'l ,/~'k] (x, u) = t-(d+~m)[K °, K k't , h 'k]( t- lx ,  t-2u). 

X TM ( h-k,O KkJ Note that  #h = Ko + z__,k>_l~"t + ~l</<k/3  + ~'tk) • 

Since K ° is a bounded compactly supported function the associated maxi- 

mal function is controlled by the appropriate variant of the Hardy-Littlewood 

maximal function and therefore ([17]) we have the inequality 

II sup If * K°III, < C~llfll, 
t 

for 1 <p_< c~. 
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Using known estimates for oscillatory integral operators with fold singularities 

and additional almost orthogonaIity estimates we shall derive in §3 and §5 the 

following L 2 estimates. 

PROPOSITION 2.1: Suppose k > O. Then for 0 ~_ l < k /3  

(2.3) 

moreover, 

(2.4) 

.k,l 
II sup If * Kt II1~ ~< ~2-~(d-~)/=(1 + IlAll21)l/21lf}12; 

t 

I] sup If * =-k Kt 1112 < v~2-~Id-2/z~(1 + ]ihll2k/3)lZ~llfll~. 
t 

To obtain L p results we shall interpolate with weak type inequalities proved 

in §6. 

LEMMA 2.2: Let k > 0. For a11 a > 0 we have 

K k'~ (x (2.5) meas({(x,u) : s u P l f *  t t ,u)] > a}) ~ k2k-l(1 + ]iAll21)a-lltflll 
t>o 

for 0 _< l < k/3 and 

(2.6) me~s({(x,~): sup ]1 • ~?(x,~)] > ~)) < k22k/3(1 + IIAll2k/~)~-lll]ll,. 
t>0 

We interpolate by the real method and obtain 

COROLLARY 2.3: Suppose 1 < p < 2 and k > O. Then for 0 ~_ l < k /3  

(2.7) II sup if* ~'~'~lllp _< Cpkl/P2-k(d-l-d/P)2-l(2/p-1)( 1 + liAilf)~/Pilflip; 
t 

moreover, 

(2.s) ]I ~up i/* fi?ill, _< C, kl/'2-~(~-~/~-~/~+~/~)(1 + ]Ih]12~/~)~/~I]/I]2. 
t 

Now if p < 2 we may sum in k and I and see that M h is L p bounded if 

d - 4 / 3 - d / p + l / ( 3 p )  > 0 which is equivalent to p > ( 3 d - 1 ) / ( 3 d - 4 )  (showing the 

estimate mentioned in remark (vii) in the introduction). If A = 0 we get a better 

bound, namely that L p boundedness holds if d - 1 - d/p > 0 or p > d/(d - 1). 

This proves our main Theorem. 
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3. S q u a r e  func t ions  and  a l m o s t  o r t h o g o n a l l t y  

It is advantageous to introduce cancellation in the above kernels, modulo small 

acceptable errors. Indeed 

[ / /  Kk'l(x,u)dxdu + / /  ~'k(x,u)dxdu < CN2 -kN, 

for all N = 0, 1 , . . . ,  and this estimate follows by an integration by parts in the 

(x, u) variables. Thus there is a C ~  function b which is equal to 1 on supp()c), 

and constants ~/k,i, ~k so that 

/ /  Kk'l (x, u)dxdu = ~ykj / /  b(x, u)dxdu, 
(3.1) 

JJ JJ 

where 

(3.2) 

We define 

(3.3.1) 

(3.3.2) 

ITkl + bk,~l < CN2 -kN. 

K k'l (X, U) = K k'z (x, u) - ~/k,lb(x, U), 

/~k (X, U) = .~.k (X, U) -- %b(x, u), 

and denote by ]~k,lt , 1~ their dilates, as before. Then the functions ,-t , 

have integral zero. 
Since the maximal operator generated by the kernel b (with nonisotropic 

dilations) is bounded by the nonisotropic Hardy-Lit t lewood maximal operator 

we see that  for 1 < p _< oc 

Ilsup If * (]C~ ' z -  K~'l)Illp _< CN,p2--kNIIflIp" 
t 

Now in order to deal with the main term we shall use the following standard 

lemma in the subject which is an immediate consequence of a similar one stated 

in [17, p. 499]. 

LEMMA 3.1: Suppose that 

sup ( z  lj2<- AI 
se[1,2] nez 

Then 
sup sup IFn(',s)l 2 <<- C(A1 + ~ ) .  

n s~[1,2] 

sup ~e[1,~] Os " 2] <_ As. 
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We omit the proof. Using Lemma 3.1 one sees that the estimates 

follow from the following estimates which are uniform in s E [l, 21: 

(C 11 f * K g ,  ll;) lj2 2 &-"d-l)/22'1' I l f  l l21 

n 

for 1 < k/3, and 

(3.6) Ilf 112, 

n 

Note by scaling that it suffices to prove these estimates for s = 1. We shall 
first use the cancellation of the kernels K$!, and kt,, to show certain almost 
orthogonality properties (for the sums in n) and then we use stronger estimates 

for oscillatory integrals to establish decay estimates for fixed n. 

AN ALMOST ORTHOGONALITY LEMMA. We first state a simple and presumably 
well known consequence of the Cotlar-Stein Lemma. 

LEMMA 3.2: Suppose 0 < E < 1, A 5 B/2 and let {Tn)?==, be a sequence of 
bounded operators on a Hilbert space H so that the operator norms satisfy 

and 

Then for all f E H 
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Proof: For N > 1 consider the operator 

"/-N : H ~ g2(H) 

which maps f to the sequence (Tl f , . . .  ,TNf, O,O,...). Now [[TNI[ = [[T~TN[[ 1/2 
where T~ TN : H --+ H is given by 

N 

Tj s = ZT  j. 
n = l  

We let Sn = TnTn and observe that  

IIS;S, II = IlSkS~*ll = [IT;TkT,*T~II 

<_ ]]T; N]]Tk T**III]T, II <_ A2 min{ A2,B22-1k-ll~ }. 

The standard Cotlar-Stein Lemma [17] gives 

oo 
* 1/2 I[T;TNII _< ~ max{ sup IlSk&ll , sup ll&S~*ll ~/2} 

k - l = m  k - l = m  m=oo 

and thus 
oo 

IITNII 2 ~ A Z min{A'B2-1m[e} 
m = - o ¢  

<_ C2e-I A 2 log(B/A). 

Thus W']"Nfl[t2(H) is dominated by the right hand side of (3.10), and the assertion 

follows by taking the limit as N -~ c~. | 

Remark: We proved Lemma 3.2 by using the statement of the Cotlar-Stein 

Lemma. Using the proof of the Cotlar-Stein Lemma one can also show the 

following more general fact: If IITnT~, II <- a2( n - nr) then 

N 1/2 

Of course, Lemma 3.2 is an immediate consequence of this inequality. 

ALMOST ORTHOGONALITY ESTIMATES. Here we wish to apply Lemma 3.2 to 

convolutions on groups. If T f  = f * g we first note that  its adjoint is given by 

T*f  = f • g* where g* = g(.-1). Moreover, using Minkowski's inequality and 

the unimodularity of nilpotent Lie groups one obtains the standard convolution 

inequality 

n f  * g n 2  5 Hg*H1Ufl]2 : HgH1HIH2" 
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We now fix k, l and s E [1,2] and derive almost orthogonality properties for 

the operators of convolution with k'k'L *x*2n. s • 

Notice that  for n _< 0 the function tC2k'[s is supported in a (small) ball of radius 

C2 n (in fact in a smaller nonisotropic ball). Moreover, we have k,l IVy,vlCs (y,v)l < 
2 k(m+2) and using the cancellation of KY~:~ts we obtain 

Ct'k'l ~*(x,u)] ~< 2k(m+2)2 n i f n  < 0. I/C~ ,l • , ,~ , ,~ ,  

B y  scaling and applying Schur's Lemma we obtain 

k , l  k , l  , (3.11) [If* 1C2~,~ * (~2~) 112 < 2k(m+2)2-i~-'~'lllfl12 
first for n < n' and then by taking adjoints also for n < n'. This and the 

following estimates are uniform in s E [1, 2]. 

Similarly we get 

k , l  k l , 

f * s 01C2'' s ~  * s 0(K:2::' s)-~s 2 ~< 2k(m+4)2-1n-~'l ]lf]12 (3.12) 

and also 

(3.13) I l f ,  1c2~ , - k  s * (~2k~s)*[I 2 < 2k(m+2)2-1n-~'lllfll> 

a(~::o, s) • s 0 ~  -~ * (3.14) f Os * s Os 2 < 2k(m+4)2-tn-n'i[lf[[2" 

In §5 we shall prove the inequalities 

(3.15) Ilf * Kk'LII= < 2-k(d-1)/221/allfl12, 

(3.16) f g [ " - - ~ s  J s=l ]12 £ 2-k(d-3)/22-l/2(1 + IIAII2~)11/[12 

for 1 < k/3, and 

(3.17) ]If * f~'kll2 < 2-k(a-~)/a2k/611fll2, 

(3.18) f * ---~-s ]s=l 2 < 2-k(e-a)/22-a/6(1 + IIAII2k/3)tlfll2" 

By scaling and by (3.2) the same inequalities hold with K a,l and ~k  replaced by 

- ~ ]C k'l 0 - k  K: k't and KYt k and with OsK k'l, OsP[ k replaced by vs 2~s, sIC2'~s, for 1 < s < 2. 

Now the inequality (3.4) follows from (3.15) and (3.11) if we apply Lemma 3.2 
with A = 2-k(d-1)/22 l/2 and B = 2 k(m+4). Similarly (3.5) follows from (3.16) 

and (3.12), (3.6) from (3.17) and (3.13), and (3.7) from (3.18) and (3.14). 

The next two sections are concerned with the derivation of inequalities 

(3.15-18). 
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4. P re l im ina r i e s  on osc i l l a to ry  in tegra l  o p e r a t o r s  w i t h  folding 

canonica l  r e l a t ions  

We shall reduce matters to estimates for oscillatory integral operators whose 

canonical relations have two-sided fold singularities. We consider localizations 

near the fold surface and the estimate goes back to Phong and Stein [13] for cer- 

tain conormal operators in the plane; the general case is implicit in Cuccagna's 

paper [3]. For the version needed here we refer to [6]. 

Let Q E ~n × ~,~ be an open set and let F be an open set in some finite 

dimensional space. We consider phases ~(x,y,7) and amplitudes a;,(x,y,7) , 
(x ,y ,7)  E f~ x ~ x F, and assume that  

(4.1) 

(4.2) 

Io;o2v(x,y,7)l <_ c, 
lOyOla,(x, y, 7)1 < cA(I.I÷I~I)/3 

say, for all multiindices a, fl with [a[, [fl[ _< IOn, with uniform bounds in f l x  F; 

we also assume that  all derivatives depend continuously on the parameter 7- 

We shall assume that  

G = { ( x , ~ x , y , - ~ ) }  

is a folding canonical relation, i.e. for each point P0 = (x0, Y0, 7o) we have 

(4.3) I! rank~v(Po)  > n - 1, 

and for unit vectors U, V 

(4.4) 

(4.5) 

~y(po)v = 0 ~ l ( V ,  vy)  det ~ 1  -> c, 

U~'~(Po) = 0 ~ I ( U , % )  det ~yl  _> c, 

for some c > 0. 

We consider the oscillatory integral operator T~[b] defined by 

T:~[b]f(x) = / ei~(x'Y"r)b(x, y, 7)f(y)dy 

which is bounded on all L p if b is bounded and compactly supported. We shall 

take for b certain localizations of the symbol in terms of the size of det qD~y. Let 

0 be smooth and compactly supported in ( -1 ,  1) so that  O(s) = 1 for Isl < 1/2 

and set 

P/ X 01(x, y, 7) = 0( 2t det ~ y ( x ,  y, 7)) - ~( 2z+1 det ~xy( , Y, 7)), 
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I !  so that v9 L localizes to the set where I det~xy I ~ 2 -l. We also define 

~ ' ( x , y )  = 1 -  ~ ~)l(x,y) 
2Z<Al13 

so that [ det ~ y  I < A -1/3 on supp(~ ) .  

Then there is a neighborhood U of (Xo, Yo,70) so that  for all a~ satisfying 

(4.2), supported in U the following estimates hold for the operator norms: 

(4.6) IIT),[a)J)I]HL2_+L2 <_ C12z/2A-n/2, 2 t <_ A 1/3 

and 

(4.7) IIT~,[a~,Ci~']IIL:_~ L: "( C1/~ 1/6-n/2. 

These estimates are a consequence of Theorem 2.1 in [6]. 

(5.2) 

where 

5. R e d u c t i o n  to  osc i l l a to ry  in tegra l  o p e r a t o r s  

We now consider the operator of convolution with K k,l and give the proof of 

the bound (3.15). The operator OsK k,l is more singular, but its estimation is 

rather analogous, so we shall point out the modifications needed for (3.16) at 

the end of this section. The estimations for/~-k and Os~[~ will be similar. 

Since K k,l is compactly supported in a fixed neighborhood we may use the 

translation invariance to reduce to the case that f is also compactly supported 

in a fixed neighborhood of the origin. Thus it suffices to show the desired bound 

for the operator with Schwartz kernel 

(5.1) ) ( l ( x , u ) K k ' l ( x  - y , u  -- v + x t J y ) x 2 ( y , v ) ,  

for suitable compactly supported smooth functions X1 and X2. In what follows 

we set A = 2 k and then by a change of variables the kernel (5.1) can be written 

as 

u, y, v) = ,~m+l f f u, y, v)yt(a, 7)dodv  H~',l(x, 
J J  

¢ ( X , U , y , v , a , T )  = a(Xd -- Yd -- F(x' - y') ) + T .  (U-- V + x t j y -  A ( x -  y)) 

and where H ~ 1 and lal ~ 2 -l  on the support of ~;  specifically 

7]/(O', T) : ~1 ( ~ / - ~  "J- tTt2)~l (2/O'), 

and )(o(x, u, y, v) = X1 (x, u))((x - y, u - v + xt j y ) x 2 ( y ,  v). 
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Notation: We let P: II~ d -~ ~d-1 be the linear map with Pe~ = ei, i = 1 , . . . ,  d -  

1 and Ped = 0. We also use the notation P for the ( d -  1) × d matrix 

P = ( i  0) 

and p t  for its transpose. 

STATIONARY PHASE CALCULATIONS. We wish to apply stationary phase ar- 

guments to reduce matters to the estimation of an oscillatory integral operators 

without frequency variables (see e.g. the general discussion in [5]). 

We shall apply a scaled Fourier transform on ~m+l, in the (Xd, u) variables. 

Define P P  

:r g( x', Xd, U) = ] ]  e-i)~(zaza+u'W)g(x ', Zd, w)dzddw; 

then ()~/27c)(m+l)/2.P~ is a unitary operator and thus, if 7/~,1 denotes the op- 

erator with Schwartz kernel H A,k, we have to prove that  .Pfl-/x't maps L 2 to 

itself with operator norm O()~-(d+m)/221/2). Let X3(Xd,U) denote a smooth 

compactly supported function which is equal to one whenever IXd] + tu] <_ 10, 

and define 5r~,1 by 

~'X,lg(X t, Xd, U) : X3(Xd, U) I f  e--iX(xaza+u'W)g(x ', w)dzddw; Zd, 

moreover, let ~'x,2 = 9v~ - ~'x,1. Then the Schwartz kernel of 9V~,lH ~'l is given 

by 

(5.3) 

where with 

A m+l / ei~'~(z'u'u'v'e)bdx, u, y, v, 0)d0, 

0 = 

the phase function q2 is given by 

• (x, u, y, v, 8) = - XdZd -- u .  w + a(Zd -- Yd -- F(x' - y')) 

+ r t (w  - v + A P t ( x  ' - y') + A d ( z  d - Yd) + (x ' t ,Zd)JY),  

and the amplitude is given by 

bl(x, u, y, v, t?) = X3(Xd, U)Xo(X', Zd, y, w)yt(a,  T). 

For the error term 5x,2H ~'~ we have a similar formula, only with X3 replaced 

by 1 - X3. Then in view of the support properties of (1 - ~(3) we see that  
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I V z d , ~ l  ~ IXdl + lul on supp(1 - X3) and by integration by parts with re- 

spect to the (Zd, w)  variables we see that  the kernel of .~ ,2H x'~ is bounded by 

CNAm+I--N(Ixd I + lUl) - N .  Moreover, this kernel is supported on a set where 

IXdl + lul ___ 1 and where Ix'l + lyl + Ivl _ c .  Thus, with an obvious application 

of Schur's Lemma we conclude that  the operator 5cx,2H x,l is bounded on L 2 

with operator norm O(,~ -N) for any N. 

We return to the main term Y x , I H  x,l and it remains to be shown that  

(5.4) 117~,l~X'~ll ~< 2~/2~-(~+m)/2. 

Note that  for fixed (x, u, y, v) the phase function k9 is a polynomial of degree 

_< 2 in the 0 variables and that  the Hessian ~ '0 is nondegenerate. 

Indeed, 

(5.5) 

qS = --Xd + etdJ~-y + a + Tt Ad, Zd 

, t  • '~ = w - v + (x , z d ) J y  + h p t ( x  ' - #') + h~(zd - y~), 

e ~  = Zd -- Yd -- F(x' - y'), 

and with E denoting the column vector in ~m with coordinates Ei = etdJiy + Aid 

we have 

~ '0 = 0 I 0 
I 0 0 " 
0 0 0 

Clearly the linear equations q20 = 0 have a unique solution 

0cr i t  = [Zd, W ,  T,  O']cri t (X,  ~t, y ,  V) ,  

with 

(Zd)cri t  : Yd + F(X' -- y'), 

(Wi)crit = Vi --  ( x ' t , y d  + r ( X  I -- y ' ) ) J i y  - e ~ A p t ( x  ' - y ' )  - AidF(X' - y'), 

(Ti )c r i  t = ~ti, 
m 

O'crit : Xd --  E ui(e tdJiy  + A i d ) ,  

i= l  

and we can apply the method of stationary phase (with respect to the 2(m + 1) 
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frequency variables 8). Setting 

(5.6) 
• (x,u,y,v)  :=  ~(x ,u , y ,V ,  gcrit(x,u,y,v)) = --Xd(Yd + F ( x '  - y ' ) )  

m 

x - -(,yd+r(x'-y'))&y-A~dr(x'-y') e~Apt(x'-y')) 
i=l 

we obtain that 

(5,7) 
Am+l / ei:~'(x'u'y'v'°)bt( x, 

where 

(5.s) 

and 

(5.9) 

u, y, v, O)dO 

N-1 

Z + 
j=O 

EJ (x, u, y, v) =(2i) - j  (det (~e0 (x, y, u, v, Ocrit (X, U, y, V))/27fi) -1/2 

1 
x ~.(qg~)Do, Do)Jbl (x, u, y, v, O)10=0c,.,,(x,~,~,~) 

IR~l(x,u,y,v)l <_ CN bl L2,+2+2NZ~ -N ~ CtN2l(m+2+2N))~ -N.  

Here we have applied Lemma 7.7.3 in [7]. 
Since 2 z < A 1/3, the error term R~] t (which is compactly supported) defines 

a bounded operator on L p with norm O(A -(2m+l+g)/3) which for large N is 

much better than the desired bound in (5.4). 

CLAIM 5.1: The operators with kernels A-J~(x ,u ,y ,v )e  i~(x'u,y,v) have L 2 
operator norm O(A-(d+m)/2-J/321/2). 

This clearly implies (5.4). 

GEOMETRY OF THE CANONICAL RELATION. We  consider the canonical re- 

lation Ce = (x,u, Cz, C u ; y , v , - ~ v , - ~ v )  and the singularities of the maps 

PL: (y,v) ~4 (~x,~u) ,  PR : (x,u) ~4 (~u,¢v). It is our objective to check 

the analogues of (4.3-4.5) and we will have to verify a few elementary linear 

algebra facts. 

Let A denote the ( d -  1) x (d - 1) matrix F"(x' - y') and let B denote the 

column vector F'(x' - y') E ]I~ d - 1  ; recall that we may assume that IIB[[ is small. 

Indeed if 

(5.10.1) Co= rain IIJ:lH - '  
u E S m - 1 

(5.1o.2) C o =  max IIJql, 
u 6 S m - 1 
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we m a y  assume tha t  

IIBII _< Co%/lOO. 
Now PL is explicit ly given by 

'~x, -XdF ' (x '  y') + P J ~ y  + F ' ( x '  , t = - _ y )edJuY + utAdF'(x  ' _ y') + u t A p  t, 

~xd = --Yd - r ( x '  - y ' ) ,  

~u~ = - ( v i  - (x 't, Yd + P(x '  - Y'))JiY - e~Apt (x  ' - Y') - AidP(X' - y')). 

We compu te  the differential DpL as 

(5.11) 
( ( x d - e t d J u Y - U t A d ) A + P J ~ , P t + B e t d J u P t  PJ~ed i )  

" = B t - 1 

~(z,u),(y,v) C c 

where I is an m x m ident i ty  ma t r i x  and  C is an m x ( d -  1) ma t r i x  with rows 

Ci = x ' t p J i P  t + ydetdJiP t -- (etdJiy + Aid)B t + e~AP t + F(x '  _ y,)edJiPt t and e 

is the column in IR m with  ci = (x 't, O)Jied + etdJiy. In this calculat ion the  skew 

s y m m e t r y  of the Ji is used. 

We now compu te  the de te rminan t  of (5.11) and ob ta in  

(5.12) det Oi'z,u),(~,v) = ( - 1 )  d det((xd - etdJuy - u tAd)A + P J u P  t + E (B) )  

where 

(5.13) E ( B )  = BetdJuP ~ + P J u e d B  t. 

Here we used the  fac tor iza t ion 

+ +,, 

1 

Note t ha t  E ( B )  is a skew-symmet r i c  ( d -  1) x ( d -  1) ma t r i x  and  so is P J u P  t + 

E (B) .  Thus,  since d - 1 is odd,  the  r ank  of P J u P  t + E ( B )  is a t  mos t  d - 2, 

and  the  following l e m m a  shows t h a t  for small  B the  r ank  is equal  to d -  2. 

LEMMA 5.2: Suppose that 

IIBII < ~o/4Co. 
Then the following holds: 

(i) I f W  C Ker(PJ,~P t + E ( B ) )  then 

(5.14) let &p twI  >_ ~-IlWll. 
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(ii) dim Ker(PJ~P t + E(B))  = 1. 

(iii) If  X belongs to the orthogonal complement of Ker( P J~, P t + E( B ) ) then 

(5.15) I[(PJ~P ~ + E(a))XI l  >_ 211Xlt. 

Proof: Observe that 

IIE(B)II _< 2CoIIBII . 

Thus if W E Ker(PJuP t + E(B))  and LIWll -- 1 then 

1 --IIptWll _< IIJ:lllllJ~p~Wll 

<_ IIj:lll(le~J~PtWI + IIP&ptwll)  

= IlJJlll(lete&PtWI + IIE(B)Wll) 

<_ Co~(le~J~ptwl + 2ColIB]I) 

and thus, if IIBll _< co/4Co, we obtain letdJ~etw[ >_ Co/2 which is (5.14). 

Let S~ = J~ + E(B).  Since S~ is skew symmetric, it can be diagonalized over 

C, and the eigenvalues are imaginary. The bounds (5.10.1/2) are still valid if 

j~-i is acting as a linear transformation on C d. Let 7/~ C d be a unit eigenvector 

of S~ so that S~r/= iAr/and 11711 = 1; then 

IAI = IIS~ll ~ I I J ~ l l -  IIE(B)~ll ~> Co -I IE(B)l l  _ Co - 2ColIB[I _ co/2 

by assumption on B. Hence IAI > Co/2 for every eigenvalue iA of S~. In 

particular Su is nondegenerate. But then PSuP t = p j u p t  + E(B)  has rank 

d - 2 and therefore a one-dimensional kernel and all nontrivial eigenvalues of 

Su are also eigenvalues of PSuP t. This implies for vectors X orthogonal to the 

kernel of PSuP  t that  

P S u p t x  >__ 211Xll 

which is (5.15). 

LEMMA 5.3: Let 92 be a symmetric positive definite matrix on Rn and let S be 

a skew-symmetric matrix on ~n Then: 

(i) For all a ~ O, the matrix apt + S is invertible and the inverse satisfies the 

bounds 

(5.16) II(a~ + s)-~ll ~ lal-~ll~-'ll ,  

(ii) If  S is invertible then apt+ S is invertible for all a and we have the bound 

(5.17) II(a92+S)-l l l  _< 21[S-1ll i l ia  I < (21lpt]lllS-11l) -1. 
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Proof'. For a unit vector e in I~ n we get 

11(, 91 + S)ell > 1((, 91 + S)e,e)l  = 1(o91e, e)l _> Io'11191- 11-1. 

Here we have used that  by the skew symmetry of S we have (Se, e) = 0, and also 

that  I]91-1 ]] = 1/Amin, where/~min is a minimal eigenvalue of 91. This establishes 

invertibility and the bound (5.16). 

If in addition S is invertible and a is small, we may simply use the Neu- 

mann series to get invertibility of a91 + S. Namely, if la] _< (2H91H][S-1]]) -1 

we get (a91 + S) -1 = S-1( I  + '~ff,~_1(-1)J(~J(91S-1) j) and the bound (5.17) is 

immediate. | 

LEMMA 5.4: Let f > 1 be an odd integer, let ~1 be the cone of real symmetric 

positive definite f x f matrices and let 122 be the set of all skew symmetric f x 

matrices with rank e - 1. 

For S E f~2 choose a unit vector es in the kernel of S and let 7rs be the 

orthogonal projection to the orthogonal complement of es. 

Then for A E f~l, S E f~2, a E ]R we have 

(5.18) det(aA + S) = a(Aes, es) det(rcs(aA + S)~r*s) + a2F(A,  S, a) 

where F is a smooth function on D1 x ~t2 × II~. 

Proo~ Let Q = Q(S) be an orthogonal transformation with etsQ = (0 , . . . ,  1). 

Then 
f aAo + So aa ) Qt(ad + S)Q = \ aa t a~ 

/ 

where So is a skew-symmetric invertible (~ - 1) x (f - 1) matrix, Ao is positive 

definite, a E ]~t-1 and ~ = (Aes,e8}. 
factor 

aAo+So a a )  
aa t a~ 

I 

and conclude that  

det(aA + S) = det(eAo + So)(~rl - ~r2at(crAo + So)-la). 

The assertion follows since det(aAo + So) = det(Trs(aA + S)Tr)). 

We apply Lemma 5.3 to aAo + So and 

(oAo: o ) 
a~? - ~72at(aAo + So ) - l a  
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VERIFICATION OF (4.3)-(4.5).  We now use the above lemmata to verify the 

analogues of conditions (4.3-5) for the phase function • in (5.6). By Lemma 5.3 
t !  the determinant of ~(x,~),(y,v) can only vanish when a := act =- xd--etdJ~Y--utAg 

vanishes. In this case the dimension of the kernel O['x,u),(y,v) is equal to the 

dimension of the kernel of p j ~ p t  + E ( B )  with B = Ff(x t - y'), thus equal to 

1. Thus rank(~i'x,~),(y,v)) _> d + m -  1 everywhere. 

In order to verify (4.4) let VL be a nonvanishing vector field which is in 

the kernel of DpL when the mixed Hessian (5.11) becomes singular (i.e. when 

x~ - etgJ~y - utAd = 0). Then 

j= l  ' o y j  i~-i i ' 

and with A = F"(x ~ - y'), we have gL -= B t W L  and 

(5.20) (aA  + P J u P  t + BetdJuP t + P J u e d B t ) W L  = 0; 

moreover, the functions hn,i are in the ideal generated by the W L , j  (and the 

coefficients can be computed from (5.11)). To get a nontrivial kernel (when 

a = 0) we must choose a nonvanishing vector WL satisfying (5.20). Notice that  

then letdJ~ptWLI is bounded below, by (5.14). By Lemma 5.4 we have 

VL (det O~t~,u),(y,v)) 

= ( - 1 ) d F l ( x , y , u ) e t d J , ~ P t W L  + F 2 ( z , y , u , v ) ( x d  -- etdg~y -- utAd) 

e " where F1 and F2 are smooth and F1 does not vanish. Thus IVL(d t O(x,u),(v,,)) I 
I !  > c on the zero set of det ¢(x,u),(y,v)" 

Next we consider the map PR and let VR be a nonvanishing vector field which 

is in the kernel of DpR (or the cokernel of (5.11)) when Xd -- etdJuy -- utAd = O. 

Then 

vR = wR,  + d + hR,i 
j = l  i-~1 i 

where by (5.11) the functions hR,i vanish when Xd -- etdJ.y -- UtAd = 0 and 

W ~ [ a A  + p j ~ p t  + BetdJ~Ptl  + g R B  t = O, 

W ~ P J u e d  - gR = 0; 

thus since A is symmetric and J,, skew symmetric we have essentially the same 

equation for WL above, except that  Ju is replaced by - J u :  

(5.21) (aA  - P J u P  t - P J u e d B  t - e t  j u P t ) W R  = O. 
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Moreover, gR = etdJuPtWR does not vanish by (5.14). As Xd -- etdJ~y -- utAd 

does not depend on x ~ we get 

VR(det (I)i~x,u),(y,v)) = F1 (x, y, u )e tdJuptWR + F'2 (x, y, u, v) (xd -- etdJ~y -- utAd) 

with smooth functions F1, F2 and nonvanishing/~1. Thus I VR(det (I)" ~1 (~,~),(~,v)J, 
is bounded below on the zero set of det O" and we have verified the (x,u),(y,~) 
statements analogous to (4.3-5). 

PROOF OF CLAIM 5.1, CONCLUSION. For small 1 the bound is immediate from 

HSrmander's standard L 2 estimate for nondegenerate oscillatory integrals ([8], 

cf. (5.12) and Lemma 5.3 above). For large I we can, by Lemma 5.4, rewrite the 

amplitude £~ as a finite sum 

gJ (x, y, u, v) = 2 2jl E ~1 (2 l+i det (I)~x,u,u,v))ql+i (x, u, y, v) 
lil<c 

where the ql+i are compactly supported and smooth and satisfy the estimates 

O~,y,u,vql+i -- O(2la).  Since 24 _< AU3, this type of blowup is covered by (4.2) 

and we can apply the estimate (4.6) and see that  the operator with kernel A-JEJ 
has L 2 operator norm < 22Yt)~-J)~-(d+m)/22 L/2. This implies our claim. 

MODIFICATIONS FOR THE PROOF OF (3.16). 

0 K kl the operator of convolution with s s' s=l. 

Let ¢ be as in (5.2) and 

By scaling we need to consider 

p ( X ' , X d , U , y , v , a , T )  O ¢ .X  U y V T) s=l 
= ~ s  (-~' s ~ ' s '  s 2 '~ '  

= o ( - x e  + ye + (x' - y') . v x , r ( x '  - ~'11 
m m 

(5.22) + 2 z ~-~(-ui + v~ - xt Jiy) + Z ,~4A(y  - x). 
i = l  i = l  

As before we set ,~ = 2 k and observe that our operator is a sum of an operator 

~x,l with Schwartz kernel 

G ~ ' l ( x , u , y , v )  

= ) ~ m + 2 / /  ei;~¢(x,u,y,v,a,r)p(x,, Xd  ' U, y, v, a, T)Xo(X, u, y, v)qL(a, T)dadT 
JJ  

and an operator which has similar properties as H ~'t above (thus satisfies esti- 

mates which are better than claimed in (3.16)). 
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We now need to carry out the stationary phase calculations as before for the 

kernel 9r~,1~ x,4 (since the contribution from ~x,26 a'l is again negligible). It has 

the form of (5.3), except that  bl is replaced by Act where c4 is given by 

c4(x, u, y, v, O) = b4(x, u, y, v, Zd, w, a, r )p ( x  , ~d, W, y, V, a, 7-). 

Then by stationary phase the Schwartz kernel of 5CX,lG x'l can be expanded as 

(5.23) 
/ .  

$m+2 ./ei~'r(x'~"Y'v'°)c4 (x, u, y, v, O)dO 

N-1  

=ei~*(x'~'~'v) Z g}(x,u,~,v) ~l-j + h~%,~,~,v) 
j=O 

where again the error term ~}4 is easy to handle for large N and [~ is defined 

as in (5.8) but with by replaced by cj. 

In order to finish the proof of (3.16) it is now sufficient to establish that  the 
1--j~l iA¢(x u y v) operator Tj x'4 with kernel ~ g~e , , , satisfies the bound 

(5.24) 11~'411L=_+L= < .\1-(d+'~)/22-4/2(1 + IIAII24). 

The differentiation in s causes a blowup by not more than ~ and by our previous 

analysis it follows that  

(5.25) I1~ ~'z II L~-~L= < 2 Z / 2 ) d - ( d + m ) / 2  (224 X-~ )j. 

If j = 1, 2 , . . .  this estimate is sufficient for (5.24), since then 24/2(2241-1) j < 

2 -4/2 by our restriction 24 < ~1/3. 

This crude estimate does not suffice for the leading term in the asymptotic 

expansion when IIAII is small (or zero). 

However, note that  when A = 0 the coefficient of ri in (5.22) vanishes on the 

critical set where 0 = 0crit(X, ~t, y,  V), since 0 ~ / 0 r  = 0 on that  set. We get 

fl(X',Zd,crit, Wcrit, y ,  V, O'crit , Tcrit) 

= ( x d  - ~'~J~y - u~Ad)((x'  - y ' ) .  v x , r ( x '  - y') - r ( x '  - y'))  
m 

+ 2 E u i ( e ~ A P t ( x '  - y ')  + e~A~F(x' - y')). 
i=1 

Since ]Xd -- etdJ~y -- utAd] ~ 2 -4 on the support of c4 and since the coefficients of 

ui are O(IIA]I), we now gain an additional factor of 0 (2  -4 + ]]AH) in the estimate 

(5.25) for j = 0 and thus establish (5.24) also for j = 0. 
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MODIFICATIONS FOR THE PROOF OF (3.17), (3.18). The only reason for the 

modified definition (2.2.3) (replacing (2.2.2) for l > k/3) is the preservation of 

the symbol estimates (4.2), needed for the validity of (4.6), (4.7). The estimation 

for ~-k is exactly analogous to the estimation of K k'l when l < k/3, and the 

same statement applies to the s-derivatives. Only notational modifications are 

needed. 

6. W e a k  t y p e  (1,1) e s t i m a t e s  

We are now proving the weak type inequality (2.5). The proof of (2.6) is omitted 

since it is exactly analogous. 

We apply standard Calder6n-Zygmund arguments (with respect to noniso- 

tropic families of balls on nilpotent Lie groups, see [4], [17]). Cf. also [14] and 

related papers on singular Radon transforms. 

Let 

Ba = { (x ,u) :  Ixl < 5,[u I < 3 u} 

and denote by Bf  its complement. 

Since we have already checked the L 2 bounds for the maximal function it 

suffices to check the following Hbrmander-type condition for L~°(IR +) valued 

kernels: 

f suplK)'t((Y,v)-l(x,u)) - K~"(x,u)ldxdu £ k2k-z(1 + IIAII2') sup  sup  
5>0 (y,v)CB~ JB~o~ t>0 

which follows from the two estimates 

B Kk't .k z sup sup ] 2. s((Y,v)-l(x,u)) -- K2"s(x,u)ldxdu 
(y,v)EBa ~o~ sE[1,2] 

2k-t(1 + IlA[121), 
~< 2k(m+2) min{2 -n& 2n5 -1}. 

Indeed we use the first bound for the O(k) terms with 2 -2k(~+1) < 2-~a _< 
2 2k(m+]) and the second bound for the remaining terms. We then sum the 

series in n. Using scaling we see that  the latter estimates are equivalent to 

(6.1) 

sup / sup IK~"(x-  y , u -  v + x~Jy) - K~"(x,u)ldxdu 
(y,v)eB,- J B~o,, s¢[1,2] 

f 2k-'(1 + Ilall2'), 
< ~, 2 k(m+2) min{r -1, r}. 

Because of the support properties of the kernel the integral on the left hand 

side is zero if r >> 1. Now assume that r < 1. Since IVI(~,~(x,u)l < 2 k('~+2) 
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the bound 2k('~+2)r in (6.1) is immediate. It remains to show that 

sup Ks k't < 2 k - t ( 1 +  IIAII2t), 
sell,2] t 

and this follows from 

(6.2) 

(6.3) 

Isr. J. Math. 

]]Kk'l]]l 5 1, 
~kl ]10sks' []a ~< 2k-l(1 + []AIIf). 

By an integration by parts in a, ~- we see that 

2k-l 2k~ 
(6.4) IKk'I(X,U)[ <~ C N 

(1 + 2k-lIxd -- F(x')]) N (1 + 2k[u -- Ax[) N 

from which (6.2) immediately follows. Moreover, from (5.22) one obtains by the 

same argument [Os Ks k't (x, u)[ is bounded by C~v 2 k-l(1 + [[A[[2 t) times the right 

hand side of (6.4). Consequently we obtain (6.3). This finishes the proof of the 

weak type inequality (2.5). | 

7. Appendix 

In this section we give the example of a two-step nilpotent Lie group G, with 10- 
dimensional Lie algebra, which satisfies the nondegeneracy condition but which 

is not isomorphic to a group of Heisenberg type. 

For # = (#a, #2) e ~2 let 

E ,  = 

and define the 8 x 8 matrix 

#e pl 0 0 
#2 #1 0 
0 #2 #a 

- E  t 0 ' 

then 

(7.1) det J~ = (#~ + #24) 2. 

Let g be the Lie algebra which is ll~ s ® ll~ 2 as a vector space, with Lie bracket 

[X + U, Y + V] = 0 + (x t j (1 ,o)Y,  x tJ(o ,1)Y) .  
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By (7.1) the  group  identified wi th  0 satisfies our  nondegeneracy  condition.  We 

now prove by contradic t ion  t h a t  f; is not  i somorphic  to a Heisenberg- type  Lie 

algebra.  

Assume tha t  there  is a Lie a lgebra  i somorphism a :  ~ --+ g where  ~ is a 

Heisenberg- type  algebra.  Then  ~ = ro ® $ where t is the  center  and  a is a 

l inear i somorphism f rom 3 to  ll~ 2 . 

Now with  respect  to o r thonorma l  bases u l , . . .  ,Us on ro and u9,ulo on 3 and 

e l , . . .  ,es  on k s and e9,elo on 11~ 2 the m a p  a is given by the 10 × 10 ma t r ix  

where  A is an invert ible 8 x 8 ma t r i x  and  B an  invert ible 2 x 2 mat r ix .  
8 8 

Now let X = ~ i = l  Xi•i '  y ~" E i = I  Y i~i' and express co E ~* in t e rms  of the 

dual  basis as co = wlu;  + w2U~o. Then,  since ~ is of Heisenberg type  we have 

co([X, Y]) = x t • y  with J2 w = - (w~ + w~)I; in par t icu lar  

(7.2) ]det  Jw] = (w~ + w22) 4. 

Now if w = at#  (thus Bt#  = (wl,  w2) t) then  

x t J B , . y  = co(IX, Y]) = (ozt)-lco(o~[.Y, Y])  ~- (p ,  [ozX, ozY]) - -  (Ax) tdz(Ay)  

so t ha t  A t j . A  = JB~, and  therefore  

det  JBt~, = (det A) 2 det J . .  

Thus  by ( 7 . 1 ) a n d  (7 .2 )we  ob ta in  IBt#l 8 = (det A)2(p  4 + #4)2 and therefore,  if 

(a, b) and  (c, d) are the  rows of the  ma t r i x  I det A I- l /4Bt ,  

.4  + .4  = ((a#l + blt2) 2 + (cpl + dlt~)2) 2, 

for all p E I~ 2 • Thus  

.4  + .4  = ((a 2 + c2).~ + (b 2 + d2)l.t~ + 2(ab + cd)#,#2)) 2 

for all # E ~e.  This  implies a e + c e = b e + d 2 = 1 and  set t ing p = ab + cd we 

obta in  af ter  a little a lgebra  t ha t  

(4p 2 + 2 )p ,p2  + 4p(#~ + #2) = 0 

for all # e II{ 2 . This  implies bo th  2p 2 + 1 = 0 and p = 0, thus a contradict ion.  
| 
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